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1. Research Aim

Source term estimation (STE) of the releases of hazardous materials into the

atmosphere refers to the identification of the source information, e.g., strength and 

location, based on limited and noisy concentration data. This process can be viewed as 

an assimilation process of the observed concentration data and the predicted 

concentration data. When dealing with releases in built-up areas, the predicted data are 

generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which 

yields building-resolving results; however, RANS-based models are outperformed by 

large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, 

it is important to explore the possibility of improving the estimation of the source 

parameters by using the LES approach. In this research, a novel source term estimation 

method is proposed based on LES approach using Bayesian inference. 

2. Method

2.1 Bayesian Inference 

Bayesian inference coupled with CFD approach was first used to identify urban 

releases by Keats, et al. [1], who provided the fundamentals of the method. Following 

their work, in this research, the LES approach is employed to improve the accuracy of 

the estimation results. The proposed method is demonstrated using a basic case of a 

single point source with a constant releasing strength; however, by combining this with 

other Bayesian STE methods, it can be generalized to address multiple point sources and 

variable releasing strengths. 

2.1.1 Problem Formulation 

In the Bayesian inference, the STE problems are addressed by using a probabilistic 
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logic. Let θ denote the set of unknown source parameters, and d denote the measurement 

data of a network of sensors. The estimation results can be obtained by calculating the 

posterior probability based on the Bayes’ theorem: 

 
𝑝(𝛉|𝐝) =

𝑝(𝐝|𝛉)𝑝(𝛉)

𝑝(𝐝)
∝ 𝑝(𝐝|𝛉)𝑝(𝛉) (1) 

where 𝑝(𝐝|𝛉) is the likelihood function, 𝑝(𝛉) is the prior probability which represents 

all the a priori knowledge about θ, 𝑝(𝐝) is the marginal probability which acts as a 

normalizing factor and does not affect the relative probabilities, and 𝑝(𝛉|𝐝)  is the 

posterior probability which is the quantity of interest in the STE problems: the 

probability of the source parameters θ given the observations d. To obtain 𝑝(𝛉|𝐝) , 

appropriate function forms need to be assigned to 𝑝(𝐝|𝛉) and 𝑝(𝛉). 

 

2.1.2 Likelihood function 

Here, a single point source with a constant releasing strength is considered, denoted 

by 𝛉 = (𝐱𝐬, 𝑞), where 𝐱𝐬 is the source location and q is the releasing strength. Assume 

the concentration measurements are provided by a network of M sensors. The 

relationship between the observations and the predictions is then described by: 

 𝐝 = 𝑞𝐡(𝐱𝐬) + 𝛆 (2) 

where 𝐝 ∈ ℝ𝑀  is the vector of concentration measurement data, 𝐡(𝐱𝐬) ∈ ℝ𝑀  is the 

source-receptor relationship vector representing the predicted mean concentrations at 

the sensors if a unitary release is made at location 𝐱𝐬, and 𝛆 ∈ ℝ𝑀 is the error vector, 

which comprises both measurement and model errors.  

The likelihood function describes the distribution of 𝛆 and has different forms. Here, 

we assign the simplest and probably most frequently used form, the Gaussian 

distribution. The error vector 𝛆 is assumed to be an independent, zero-mean Gaussian 

random vector, i.e., 𝜀𝑚~𝒩(0, 𝜎𝑚
2 ), which yields the likelihood function: 

 
𝑝(𝐝|𝛉) ∝ exp [−
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2.1.3 Prior probability 

The prior probability represents the knowledge about θ prior to receiving any 

measurements. Here, it is assumed that the source parameters are independent, 

indicating that one parameter implies nothing about the others: 

 𝑝(𝛉) ≡ 𝑝(𝐱𝐬, 𝑞) = 𝑝(𝐱𝐬)𝑝(𝑞) (4) 

Generally, in a STE problem, the prior information of the source parameters is 

unavailable, so non-informative priors are used for both parameters. Namely, for 𝐱𝐬, 

complete ignorance of the location parameters is to assign a uniform prior, assuming the 

source can be located anywhere with equal possibility in a specified potential source area, 



as denoted by 𝛺: 

 𝑝(𝐱𝐬)~𝒰𝛺(𝐱𝐬) (5) 

With respect to q, a scale parameter, the Jeffreys prior is assigned, which remains 

invariant under transformations of scale: 

 𝑝(𝑞) ∝ 1/𝑞, 𝑞 ∈ [𝑞min, 𝑞max] (6) 

Using a scale-invariant prior ensures that 𝑝(𝑞) = 𝑝(𝑎𝑞) for any constant a. The upper 

and lower bounds ensure that the prior probability density function is normalizable. In 

this study, [𝑞min, 𝑞max] = [0.01,100] L/min. 

 

2.1.4 Posterior probability and MCMC 

Substituting Eq. (3-6) into Eq. (1) yields the explicit form of 𝑝(𝛉|𝐝). Despite the fact 

that its distribution can be directly obtained by numerical quadrature, it is 

computationally expensive due to the multidimensional parameter space. To reduce the 

computational cost, MCMC algorithms have been used [2, 3]. A set of sampling points 

are generated to approximate the distribution of 𝑝(𝛉|𝐝) by the Metropolis-Hastings-

within-Gibbs algorithm.  

In this research, rejection sampling and slice sampling are employed to generate 

samples from the priors 𝑝(𝐱𝐬) and 𝑝(𝑞), respectively. 3 parallel Markov chains are 

generated to get more robust estimations. Each chain starts from a random location and 

has 10,000 total samples, among which the first 1,000 are discarded (known as the burn-

in period). The remaining samples, 27,000 in total, are used as the approximation of the 

distribution of 𝑝(𝛉|𝐝). 

 

2.2 Source-Receptor Relationship 

The source-receptor relationship is the sensitivity of the concentration at each 

sensor to a given source location. This relationship contains the information of the 

dispersion model. Assume that the potential source area is discretized into N grid cells, 

and then the source-receptor relationship is a matrix composed of N source-receptor 

vectors: 

 𝐇 = [𝐡(𝐱𝐬,1), 𝐡(𝐱𝐬,2), … , 𝐡(𝐱𝐬,𝑁)] (7) 

where 𝐇 ∈ ℝ𝑀×𝑁  is a Jacobian matrix, where the (m,n)-th element is the predicted 

concentration at the m-th sensor given a unitary release at the n-th source location. By 

solving the advection-diffusion equations, 𝐇 can be calculated one column at a time, N 

times in total, after the simulation of the flow field. Normally, however, the sensors are 

heavily outnumbered by the possible locations, i.e., M ≪ N. By solving the adjoint 

equations, 𝐇  can be calculated row by row, thus the solution counts are markedly 

reduced from N to M [4].  

 



2.2.1 Airflow model 

The LES approach is used to simulate the flow field. Three-dimensional isothermal 

flow simulations are performed by an open source software program (OpenFOAM 2.2.1) 

to reproduce the airflow in built-up areas. The CFD settings follow the Architectural 

Institute of Japan (AIJ) guidelines for wind environment prediction [5]. In terms of the 

sub-grid scale (SGS) eddy viscosity model, the standard Smagorinsky model with the 

constant Cs = 0.12 is used. The Van Driest damping function is applied in near-wall 

regions. The second-order central differencing scheme is applied to the spatial 

discretization. The second-order implicit scheme is specified for the time derivative. The 

governing equations are solved using the pressure-implicit split-operator (PISO) 

algorithm. It should be noted that although we choose version 2.1.1 of OpenFOAM 

instead of the latest version, all of the analysis used in this research can be performed 

equally with any later version. 

 

2.2.2 Adjoint equation in time-averaged flow 

The adjoint advection-diffusion equation is a useful approach for reducing the cost 

of STE problems since they only need to be solved once for each sensor to obtain the 

entire source-receptor relationship. Pudykiewicz [4] provided the detailed derivation of 

the adjoint equations. After the flow field is obtained by the airflow model, the adjoint 

equations in transient flow can be constructed by reversing the signs of the variation 

term and the advection term in the forward advection-diffusion equations. Theoretically, 

the adjoint equations in transient flow can be solved in a backward time-stepping; 

however, this requires storing the flow field of every time step, which costs an 

impractically huge amount of time and storage space due to the small time steps and 

high grid resolution in LES.  

To overcome this difficulty, the adjoint equations are derived based on the time-

averaged flow field of LES results, as follows 
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with the initial condition 

 ℎ𝑚(𝑡 = 𝑇) = 0 (9) 

and the boundary conditions 

 ℎ𝑚 = 0 𝑎𝑡 𝛤1

𝐷e

𝜕ℎ𝑚

𝜕𝐧
+ ∑ 𝑢𝑖
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 (10) 

where ℎ𝑚 is the adjoint corresponding to the m-th sensor, 𝑟𝑚 acts like a unitary source 

at the m-th sensor location, 𝑢𝑖 is the mean velocity vector, 𝑇 is the latest time step in 



the forward simulation, 𝛤1 represents the outflow boundary, 𝛤2 represents the inflow 

boundary, 𝛤3 represents the solid surfaces and the far field, n is the unit vector normal 

to the boundaries, and 𝐷e  is the mean mass diffusivity, including the molecular 

diffusivity 𝐷  and the turbulent diffusivity 𝐷t , as 𝐷e = 𝐷 + 𝐷t . In Eq. (8), 𝑢𝑖  can be 

obtained by averaging the LES flow fields, 𝐷  is a global parameter dependent on 

temperature, and thus 𝐷t is the only parameter to be determined. 

Combest, et al. [6] published a review on different approaches to model 𝐷t, among 

which the simplest and most popular assumption is adopted here that there is a 

similarity between the turbulent mass diffusivity and turbulent momentum diffusivity 

(i.e., eddy viscosity 𝜈t). The similarity is characterized by assigning a global turbulent 

Schmidt number: 

 𝐷t = 𝜈t/Sct (11) 

where the turbulent Schmidt number Sct is empirically assigned as 0.7 [7], and the eddy 

viscosity 𝜈t can be estimated based on the mean velocity and the Reynolds stresses from 

the LES airflow results, following the method presented by Tominaga and Stathopoulos 

[8]. Based on the gradient diffusion hypothesis, 𝜈t is given by Eq. (12-14).  

 𝜈t = − ∑ 𝑅𝑖𝑗𝑆𝑖𝑗

𝑖,𝑗

/ ∑ 2𝑆𝑖𝑗
2

𝑖,𝑗

 (12) 

where  

 
𝑅𝑖𝑗 = 〈𝑢𝑖

′𝑢𝑗
′〉 −

2

3
𝑘𝛿𝑖𝑗   (13) 

is the deviatoric component of the Reynolds stress tensor,  

 
𝑆𝑖𝑗 =

1
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𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
+

𝜕〈𝑢𝑗〉

𝜕𝑥𝑖
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is the mean strain rate, 〈𝑢𝑖〉 is the time-averaged velocity, 〈𝑢𝑖
′𝑢𝑗

′〉 is the Reynold stress, 

𝑘 = 〈𝑢𝑖
′𝑢𝑖

′〉/2 is the turbulent kinetic energy, 𝛿𝑖𝑗 is the Kronecker delta, and the indices 

i and j both take on values 1, 2, or 3, denoting spatial components.  

Substituting Eq. (11-14) into Eq. (8) yields the adjoint equations in the time-

averaged flow which can be obtained by conducting LES without storing the results of 

every time step. Although the time-dependent fluctuations and the anisotropic flow 

behaviors are averaged out, this approach provides superior predictions of the mean flow 

field and the turbulent structure compared with RANS-based models, thus yielding an 

improved source-receptor relationship and consequently better estimation of the source 

parameters.  

For a release with a constant strength, as considered in this research, the variation 

term is dropped, and Eq. (8) becomes steady in terms of time. Solving the steady-state 

adjoint equations gives the m-th row in the source-receptor relationship 𝐇.  

 



3. Research Result 

3.1 Case Description 

3.1.1 Wind Tunnel Experiment 

To validate the proposed method, we consider a three-dimensional dispersion 

scenario with a ground-level source, here 𝐱𝐬 = (𝑥1, 𝑥2), using an online wind tunnel 

dispersion experiment carried out at Tokyo Polytechnic University [9]. A wind tunnel 

with a test section 1.2 m wide and 1.0 m high was used to measure the concentration 

distributions of a continuous point tracer releasing scenario. As shown in Fig. 1 (a), a 

cuboid block of height H = 200 mm, width W = 100 mm and length L = 100 mm was set 

as the building model. An atmospheric boundary layer flow approaching perpendicularly 

to the building was reproduced. Pure C2H4 was released at a flow rate of q = 0.35 L/min 

from a hole (with a diameter of 2 mm) on the ground in the wake region of the building, 

a challenging location to identify due to the dominant vortex and strong turbulence. 

 

Fig. 1. Experimental setup (a) and measuring points: (b) vertical plane (x2/H=0) and (c) 

horizontal plane (x3/H=0.0625). 

The velocity components and concentrations measured at the vertical symmetry 

plane (𝑥2/𝐻 = 0) and a horizontal plane (𝑥3/𝐻 = 0.0625) are used to evaluate the airflow 

models. The measuring points are shown in Fig. 1 (b) and (c). The wind velocity and gas 

concentration were simultaneously measured using a split film probe and a fast response 

flame ionization detector, respectively. The sampling frequency was set at 1,000 Hz, to 

obtain 120,000 data in 120 seconds. The mean concentrations measured at the 10 points 

on the horizontal plane are used to form the measurement vector 𝐝 to perform STE, as 

shown in Fig. 2. In addition, the profiles of velocity components of the approaching wind 

were measured to fit the inlet boundary conditions in the CFD simulation. The reference 

velocity 〈𝑢𝐻〉 = 4.2 m/s is the upwind mean velocity at the building height H. 



 

Fig. 2. Source term estimation configuration. The ground level source is denoted by the 

diamond. The 10 numbered dots depict sensors located at a height of 0.0625H. The 

shown region is used as the possible source area. 

 

3.1.2 Simulation settings 

The proposed method is employed to estimate the source parameters based on LES 

approach, and its performance is compared to that of the existing method using RANS 

simulation data. The settings of both the LES and the RANS simulations are set up by 

referring to several best practice guidelines [5, 10] for the CFD simulations of flows and 

dispersion in the urban environment.  

To make a fair comparison, the same computational domain and mesh are used. The 

size of the computational domain is 12.5H × 6H × 4H (2.5 m × 1.2 m × 0.8 m). The 

distance between the inflow boundary and the building model is 2H; the distance 

between the outflow boundary and the model is 10H; and the distance between the 

lateral boundaries and the blocks is 2.75H. A rectangular mesh is generated. The central 

domain near the blocks (the measured region) consists of the smallest elements, cubic 

grids with a uniform dimension of 1/42H. The maximum length ratio outside the central 

domain is less than 1.05. The total number of computational cells is approximately 3.3 

million. Grid independence is evaluated by the grid convergence index (GCI), following 

the procedures introduced by Hefny and Ooka [11]. The GCI values for LES and RANS 

are 0.41% and 0.31%, respectively, for doubled cell number, indicating that the given 

mesh arrangement is fine enough. 

 

LES settings. The eddy viscosity model, discretization schemes, and solver follow 

the generic settings. The time step is set to 0.001 s. Before time averaging, a simulation 



is conducted for 60 s to eliminate the impact of the initial condition; then, another 60 s 

simulation is performed to obtain the time-averaged flow data. The averaging period has 

been confirmed to be long enough to give steady values. 

The lateral and upper boundaries are treated as symmetry planes. For the outflow 

boundary, zero gradients are specified for all variables. For the ground boundary and 

building surfaces, the Spalding’s law of the wall is used [12]. In terms of inflow boundary, 

a separate LES computation is conducted to reproduce the turbulent inflow, or more 

specifically, the entire roughness fetch of the wind tunnel is simulated.  

 

RANS simulation settings. The RANS equations are solved using the standard k-ε 

turbulence model. Shirasawa, et al. [13] reported the prediction accuracy of the standard 

k-ε model and revised k-ε models such as the Realizable, Renormalized Group, and Kato-

Launder models for the flow and dispersion with a similar 2:1:1 building model. 

Compared with the standard k-ε model, the revised models overpredicted the size of the 

recirculation zone and showed lower accuracy in the wake region. Thus, the revised 

models are not used in the present study, because the source is located in the wake region 

of the building. 

In the standard k-ε model, the eddy viscosity 𝜈t required in Eq. (11) is modeled by: 

 𝜈t = 𝐶𝜇𝑘2/𝜀 (15) 

where 𝐶𝜇 = 0.09 is a model constant, and ε is the dissipation rate. The second-order total 

variation diminishing (TVD) discretization scheme is applied to all governing equations, 

which are solved using the semi-implicit method for pressure-linked equations 

(SIMPLE) algorithm. 

Boundary conditions for the lateral, upper, and outflow boundaries are the same as 

those used in the LES. For the ground and building boundaries, the generalized log-law 

wall function is specified. The profiles of 〈𝑢1〉 and k at the inflow boundary are specified 

based on the wind tunnel measurements. The inflow values of ε are calculated by 

assuming local equilibrium between ε and the production term of k: 

 

3.2 Results and Discussion 

In this section, the predicted airflow and concentration fields are compared with the 

experimental data, and the estimation results obtained by using both LES and RANS 

approaches are presented. The CFD simulations were conducted by a high-performance 

workstation and the Bayesian inference was performed on a laptop. The computational 

time and the computer information are summarized in Table 1. The LES approach 

requires more time than the RANS model, but in practice these time-consuming CFD 

 
𝜀 = 𝐶𝜇

2𝑘
𝑑𝑢

𝑑𝑥3
 

 
(16) 



simulations can be completed before a pollutant release event occurs. In this pre-event 

stage, only simulations with different inflow directions need to be performed, since the 

inflow wind speed is inversely proportional to the source-receptor relationship. Thus, 

after a limited number of simulations, we can have a database with all of the source-

receptor relationships that we need. Then, during an emergency or accidental release 

event, as data stream in from the sensors, the Bayesian inference can be conducted 

without running CFD simulations and finished in a very short time, even on a laptop. 

Table 1  

Summary of the computational time and the computer information.  

 LES RANS Computer information 

Airflow 

simulation 
67h 40min 3h 15min Intel(R) Xeon(R) E5-2680 @ 2.70GHz  

(2 CPUs × 8 cores in parallel) 
Adjoint equations 51min 1h 3min 

Bayesian 

inference 
23s 23s 

Intel(R) Core(TM) i7-3610QM @ 

2.30GHz  

(3 cores in parallel) 

 

3.2.1 Comparison between observed and predicted flow fields 

The performance of the STE is dependent on the source-receptor relationship, which 

is solved based on the predicted flow field; therefore, the accuracy of the predicted flow 

field is critical to the success of the estimations. Here, the observed and predicted results 

of the mean velocity and the turbulent kinetic energy are compared. 

 

Fig. 3. Mean streamwise wind velocity 〈𝑢1〉  of the vertical plane ( 𝑥2/𝐻 = 0 ): (a) 

experiment, (b) LES, and (c) RANS. The dashed lines represent the contours of 〈𝑢1〉 = 0. 

Fig. 3 depicts the vertical distributions of the mean streamwise wind velocity of the 

experiment and the simulations. The RANS model overestimates the size of the 

recirculation zone behind the building. In the near-field region, the predicted reverse 

flow is stronger than the observed flow, whereas the predicted flow behind the 

recirculation zone (x1/𝐻 = 0.7 − 1.5) is weaker. Compared with the RANS model, the LES 

provides a shorter recirculation zone with a shape similar to the one observed in the 

wind tunnel, and the velocity in and behind the recirculation zone is closer to the 



experimental results.  

 

Fig. 4 shows the vertical distributions of the turbulent kinetic energy. The RANS 

model yields a false peak area near the windward face of the building and fails to predict 

the peak area in the recirculation zone behind the building. In addition, the RANS model 

gives a smaller value of k in the leeward of the building compared with the observed 

value. The LES provides closer predictions of k and the correct peak area in the 

downwind region, although in which an overestimation can be found.  

Overall, the LES outperforms the RANS model in the predictions of both the mean 

flow field and the turbulent structure, especially in the wake region of the building, 

because the LES reproduces the periodic fluctuations due to vortex shedding, whereas 

the RANS model fails. 

In addition, by applying the proposed method as expressed by Eq. (11-14), the LES 

results is used to estimate the turbulent diffusivity 𝐷t, which is compared with the one 

calculated by the RANS model based on Eq. (11) and (15). The comparison is shown in 

Fig. 5. It is worth noting that the distribution obtained by the LES approach is not 

smooth because the mass transport in real scenarios is anisotropic. The peak area in the 

windward region of the RANS model is caused by the overestimation of k shown in Fig. 

4 (c). In the leeward region, a similar trend of the distributions can be observed; however, 

the value given by the RANS model is smaller than that estimated by the LES approach. 

This underestimation is also because of the failure to reproduce the periodic fluctuations.  

 

Fig. 5. Turbulent diffusivity 𝐷t of the vertical plane (𝑥2/𝐻 = 0): (a) estimated by using 

the LES data, and (b) calculated by the RANS model. 

 

3.2.2 Comparison between observed and predicted concentrations 



The different 〈𝑢𝑖〉  and 𝐷𝑡  distributions lead to different predictions of 

concentration distributions. By setting the source properties as the true source, the 

predicted concentrations can be calculated by solving the forward advection-diffusion 

equations. The normalized concentrations on the horizontal plane obtained by different 

simulation methods are shown in Fig. 6, in comparison with the observed concentrations. 

Fig. 6 (b) shows the mean concentration distribution predicted by LES approach, solving 

the forward advection-diffusion equations by each time step. Fig. 6 (c) shows the 

concentrations obtained by solving the advection-diffusion equations constructed using 

the time-averaged flow simulated by the LES approach, which is the transport and 

dispersion model used in the proposed STE method. Fig. 6 (d) shows the concentrations 

predicted by the RANS model. The simulations based on LES yield better distribution 

patterns in the wake region compared with the RANS simulation. Besides, the horizontal 

dispersion is underestimated by the two approaches using time-averaged flow. 

 

 

Fig. 6. Mean concentration 〈𝑐〉 of the horizontal plane (𝑥3/𝐻 = 0.0625) obtained: (a) in 

wind tunnel experiment, (b) in transient flow of LES, (c) in time-averaged flow of LES 

and (d) using RANS. 



 

Fig. 7. Comparison of the mean concentrations 〈𝑐〉 at the 10 sensor locations, obtained: 

(a) in wind tunnel experiment, (b) in transient flow of LES, (c) in time-averaged flow of 

LES and (d) using RANS. The error bars denote the standard deviations of the 

observed concentrations, 𝜎𝑚. 

Fig. 7 shows the comparison between the observed and the predicted concentrations 

at the 10 sensor locations. The error bars indicate the standard deviations of the observed 

concentrations, 𝜎𝑚 . The concentrations near the center line ( 𝑥2/𝐻 = 0 ) are 

underestimated in the transient flow of LES, while the lateral concentrations are 

overpredicted. In averaged flow of LES, the predictions are similar to the ones obtained 

in transient flow. With regard to RANS, the simulation yields higher concentrations at 

the lateral sensors, whereas the concentrations near the center line are underestimated. 

  

3.2.3 Estimation results of source parameters 

Different predictions of concentration result in different estimations of the source 

parameters. These differences in estimation are shown by keeping other STE inputs the 

same: time-averaged concentrations are used to form the measurement vector d; the 

standard deviations of noise 𝜎𝑚 are given by the standard deviations of measurements 

at the corresponding sensors, indicating that the errors are of the same magnitude as 

the turbulent fluctuations of the tracer concentration; and the settings of Bayesian 

inference are according to those described earlier. It should be noted that 𝜎𝑚 is both 

difficult to determine and influential for the estimation.  

Fig. 8 depicts the marginal posterior distributions of the source location 𝑝(𝐱𝐬|𝐝) 

obtained by using the LES and the RANS approaches, respectively. For the estimation 

using LES, a triangular-shaped area with high probability density centers around the 

true location (Fig. 8 (a)); and a more dispersed distribution can be observed for the 

estimation based on RANS simulation (Fig. 8 (b)). As a result, the inference using LES 

yields a close estimation of 𝐱𝐬, with a slight deviation towards downwind, whereas the 

inference using RANS simulation provides a much farther estimation. To show the 

dispersions of the probability distribution, the 50% and 95% credible regions (CRs) are 



presented in Fig. 9. With respect to the estimation using LES shown in Fig. 9 (a), the 

50% CR is a small area, of which the true source is located in the middle; the 95% CR 

consists of a bulk of probability mass and very few stray spots and is located entirely in 

the recirculation region, indicating that the source is most likely to be in the region, but 

somewhat less clear within it, due to the rapid mixing of tracer gas by the dominant 

vortices. In terms of the estimation using RANS simulation shown in Fig. 9 (b), the 

discontinuous 50% CR indicates several peaks of the probability distribution; and the 

95% CR is much larger and more dispersed, with a large portion in the upwind region.  

 

Fig. 8. The marginal posterior probability density distributions of the source location 

𝑝(𝐱𝐬|𝛍): estimations using (a) LES, and (b) RANS simulation. The red and white dots 

denote the true and estimated source locations, respectively. Here, the posterior mean is 

selected as the point estimate. 

 

Fig. 9. The 50% and 95% credible regions (CRs), namely the highest posterior density 

regions, of the source location: estimations using (a) LES, and (b) RANS simulation. 

The red and white dots denote the true and estimated source locations, respectively. 



 

Fig. 10. The marginal posterior probability distributions of source location (𝑥1- and 𝑥2-

coordinates) and strength q: estimations using (a) LES, and (b) RANS simulation. Solid 

lines and dashed lines denote the point estimates (posterior means) and true 

parameters, respectively. 

Fig. 10 shows the marginal posterior distributions of the source parameters. For 𝑥1, 

the distribution obtained by LES has one clear peak near the true source location, 

although there is another small peak around 𝑥1/𝐻 = 0.60; the distribution by RANS has 

three peaks, the largest one near 𝑥1/𝐻 = 0.47. For 𝑥2, both methods yield a symmetrical 

distribution centered at the true source location, but the distribution by LES is narrower. 

For q, the distribution by LES has a peak value equal to its point estimate; whereas the 

distribution by RANS has a longer tail, leading to a smaller peak value compared to its 

point estimate. 

It is worth noting that the estimated 𝑥1 has a positive bias in both methods, while 

the estimated q has a positive bias in LES but a negative bias in RANS. The joint 

posterior probability density distributions between 𝑥1 and q are shown in Fig. 11 for a 

better understanding of such pattern. First, the source is located in the wake of the 

building, where the velocity direction is opposite to the inflow. Therefore, a slight positive 

bias of 𝑥1 means the source is farther from the sensors, so the estimated q increase in 

LES. However, in RANS, the positive bias of 𝑥1 becomes too large, even with a large 

probability of 𝑥1/𝐻 > 0.5, which is upstream of the sensors No. 1 to 5 (𝑥1/𝐻 = 0.5). As a 

result, the tracer is predicted to reach this sensor directly without diffusion in the wake, 

and a negative bias of q is occurred to meet the concentration measured at the sensors. 

Second, even if the true source location is given, the estimated source strength would 

still be positively biased in LES and negatively biased in RANS, because the 

concentrations are underestimated in LES and overpredicted in RANS. The above two 

reasons combined can be an explanation of the different bias directions of q. 



 

Fig. 11. The joint posterior probability density distributions between 𝑥1 and q: 

estimations using (a) LES, and (b) RANS simulation. 

The estimation results are summarized in Table 2. In general, the inference using 

LES outperforms the one using RANS simulation in the estimations of both the source 

location and the strength. Especially with respect to the source location, the inference 

using LES yields not only the better point estimation but also much smaller credible 

regions, indicating that the true location has been well identified with high confidence. 

To quantify the accuracy of the estimations, two indices are defined: the location error 

𝐸𝐿, representing the Euclidian distance between the estimated source position and the 

true location; and the strength error 𝐸𝑞 = 𝑞est/𝑞true − 1, a ratio of estimated to true 

source strength. Compared with the one using RANS simulation, the inference using 

LES reduces 𝐸𝐿 and 𝐸𝑞 by 77% and 28.1%, respectively.  

Table 2  

Summary of the estimation results.  

Method 
True value  Source location estimation  Source strength estimation 

(x1,x2)a qb  (x1,x2)a 50% CRc 95% CRc EL
a  qb 95% CIb Eq

 

LES 

(0.25,0.0) 0.35 

 (0.30,0.00) 0.019 0.267 0.05  0.441 (0.147,0.688) 0.261 

RANS  (0.47,0.00) 0.049 1.045 0.22  0.223 (0.051,0.479) 
-

0.363 

a Normalized by H. 

b Unit: L/min. 

c The sizes of the credible regions (normalized by H2). 

 

4. Conclusions 

In this research, a novel STE method is proposed based on the LES approach. A 

Bayesian inference method, combined with the LES approach, the adjoint equations and 

the MCMC algorithm, is used to retrieve the source location and strength of a point 

source in a wind tunnel experiment, in which the source is a constant tracer release 



located in the wake region of a building model. The source-receptor relationship is 

obtained by solving the adjoint equations constructed using the time-averaged flow 

simulated by LES approach. The performance of the proposed method is evaluated 

against the existing STE method which uses a RANS model to calculate the source-

receptor relationship.  

By comparing the predicted flow fields with the experimental measurements, the 

LES yields better results of both the mean flow field and the turbulent structure, 

especially in the wake region of the building, relative to the RANS simulation. One of 

the reasons is that the LES reproduces the periodic fluctuations due to vortex shedding, 

whereas the RANS model cannot capture transient behaviors.  

Better airflow predictions lead to a more accurate source-receptor relationship, 

consequently resulting in better estimations of the source parameters. The estimation 

results show that the proposed inference method using LES outperforms the existing one 

using RANS simulation in the estimations of both the source location and the strength. 

By adopting the proposed method, the location error is reduced from 0.22H to 0.05H, and 

the strength error is also reduced from -0.363 to 0.261. In addition, the inference using 

LES yields not only better point estimation of the source location but also much smaller 

credible regions, indicating that the true source location has been well identified. Overall, 

the proposed STE method using LES approach can provide accurate identification of the 

source in the wake regions, where the conventional methods, such as the inference using 

RANS simulation, tend to yield less accurate estimations. 
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